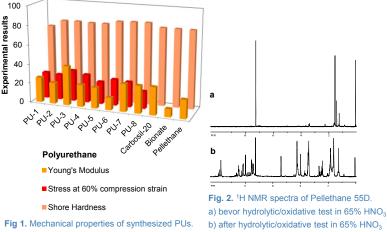
THERMOPLASTIC POLYURETHANE ELASTOMERS FOR POTENTIAL BIOMEDICAL USE: SYNTHESIS OF α,ω –DI(HYDROXY)POLYISOBUTYLENE AS MACRODIOL FOR THE **PREPARATION OF POLYURETHANES**

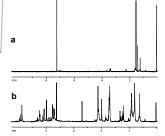
M. A. Maurus,^{1, 2*} L. Kitaeva,² C. Liu,² T. Maier,² W. Schramm,² G. Lorenz^{1, 2}

¹ Reutlingen University, School of Applied Chemistry, Alteburgstraße 150, 72762 Reutlingen, Germany

² Reutlingen Research Institute, Alteburgstraße 150, 72762 Reutlingen, Germany

INTRODUCTION


Polyurethane (PU) is a synthetic polymeric material, which is synthesized by the polyaddition reaction of dioles with diisocyanates. The good mechanical properties^{1b} and their relatively good biocompatibility^{1a, b} make the PUs to the most used biomaterials. For that reason polymeric materials based on PU have a great utilization in the manufacturing of medical implants.1a, b


Keywords: polyurethane, cationic polymerization, polyisobutylene, ¹H-NMR

RESULTS: SYNTHESIS AND CHARACTERIZATION OF PUS USING POLYCARBONATE DIOL (PC) AS SOFT SEGMEN

Table 1. Synthesis of PUs based on (PC) and 4,4'-diphenylmethanediisocyanate (MDI)

PU R-PDMS-R (%)		R	Chain extender	Hard segment (%)	
1	10	OH	1,4-butanediol	35	
2	5	ОН	1,4-butanediol	35	
3	5	ОН	1,4-butanediol	40	
4	5	OH	1,4-butanediamine 1,5-pentanediol	35	
5	5	ОН	1,5-pentanediol	35	
6	5	NH ₂ ,3000 g/Mol	1,4-butanediol	35	
7	5	NH ₂ ,5000 g/Mol	1,4-butanediol	35	
8	-	-	1,4-butanediol	35	

140 120 2 100 Enhancement modulus 80 60 40 20 Pellethane PU-8 80A

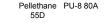
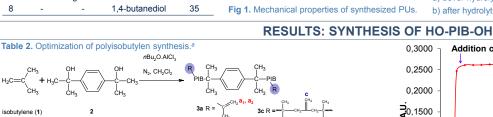
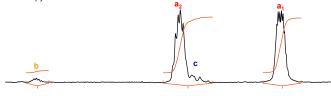
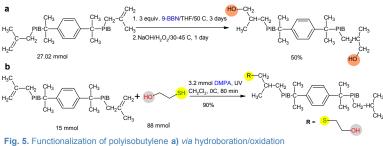




Fig.3. Hydrolytic/oxidative tests. 1 h reaction time in 35% HNO₂



entry	AICI ₃ /nB ₂ O (mmol)		D					
			time (h)		H ₂ O (mMol)		PIBend-group composition 3a:3b:3c	Mn ^e (g/Mol)
1 ^b	18.8/15.6	1.1	3 ¹⁵	-40	16.6	53	1:0.04:0.008	1056
2°	18.8/16	11	5	-60	16.6	35	1:0:0	2515
3°	16/16	5	5	-40	0.55e-3	58	1:0.03:0.03	1168
4¢	16/11.8	5	5	-40	0.55e-3	60	1:0.09:0.03	2120

^a 534.6 mmol (50 ml) 1; ^b 150 mL CH₂Cl₂ were used as a solvent; ^c 200 mL CH₂Cl₂ were used as a solvent; ^d determinated gravimetrically; ^e determinated by ¹H NMR spectroscopy.

PPM 5.16 5.12 5.08 5.04 5.00 4.96 4.92 4.88 4.84 4.80 4.76 4.72 4.68 4. Olefinic part of the ¹H NMR spectrum (mixture 3a, 3b and 3c) Fig

IMTEK

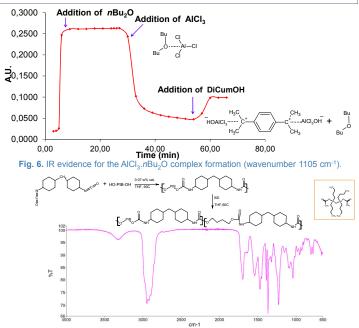


Fig. 7. Reactivity test of HO-PIB-OH towards 4,4'-diisocyanatodicyclohexylmethan (H₁₂MDI).

CONCLUSIONS

- ▶8 PC-PUs were synthesized and characterized.
- > exo-terminated PIB was synthesized using H₂O/AICI₃.nBu₂O/DiCumOH as initiating system.
- two strategies for the synthesis developed.
- PIB-PU has a good reactivity towards H₁₂MDI.

be innovative

111h

CSIRO

Angewandte Chemie

REFERENCES

[1] (a) L. Pinchuk, J. Biomater. Sci. Polymer Edn. 1994, 6, 225; (b) R. J. Zdrahala, I. J. Zdrahala, J. Biomater. Appl. 1999, 14, 67; [2] A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo. M. A. Corcuera, I. Mondragon, Polym. Eng. Sci. 2008, 297; [3] D. J. Martin, L. A. Poole Warren, P. A Gunatillake, S. J. McCarthy, G. F. Meijs, K. of HO-PIB-OH were successfully Schindhelm, Biomaterials 2000, 21,1021; [4] (a) G. Erdodi, J. Kang, J. P. Kennedy, J. Polym. Sci. A Polym. Chem. 2010, 48, 2361; (b) D. I. Shiman, I. V. Vasilenko, S. V. Kostiuk, Polvmer 2013, 54, 2235; (c) K. Toth, N. C. Kekec, N. Nugay, J. P. Kennedy, J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1119.

Hochschule Reutlingen

Reutlingen University

SOFT LENS Development of silicone-based implant material for accommodating intraocular lenses (a-IOL) by means of micro injection molding grant number: 03FH03213

GOALS

The aim of this study is to develop a synthesis method for PUs based on macrodiols with excellent hydrolytic/oxidative stability. We started our investigations with a commercially available polycarbonate (PC) because it has a relatively good resistance to hydrolysis.² In order to increase the biostability a small amount of polydimethylsiloxane (PDMS)³ was added as comacrodiol. As the polyisobutylene (PIB) moiety exhibits hydrolytic and oxidative stability⁴, it is to be expected that PUs based on PIB should have the same properties. Because a PIB-macrodiol is not commercially available, it seemed appropriate to perform the synthesis in our laboratory.

Bundesministerium für Bildung und Forschung